

- 1. Describe the prevalence, risk factors and consequences of CKD in nonrenal solid organ transplant recipients (NRSOTR)
- 2. Identify typical practice challenges in this population and management approaches
 - therapeutic drug monitoring
 - drug interactions with immunosuppression
 - common infectious complications

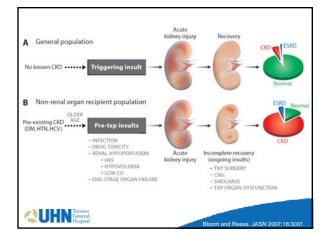
Background

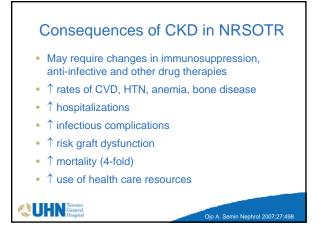
- NRSOT activity is increasing
- Improved outcomes in NRSOTR has increased 'time at risk' → more observed cases of post-transplant CKD
- Demand for post-transplant nephrologist care now nearly equal to kidney transplant population

Canadian Solid Organ Transplant Activity and Graft Survival (2010)

Organ	Number of transplants	Est. 5-year graft survival	
Kidney – deceased donor	647	81%	
Kidney – living donor	413	90%	
Liver – deceased donor	391	75%	
Liver – living donor	64	78%	
Lung	179	65%	
Heart	154	80%	
		www.Cl	

Acute Renal Failure After Solid Organ Transplantation

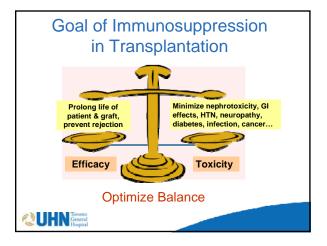

Incidence


UHN Toronto General Hoursita

- Heart: 20-30%
- Liver: 46-61%
- Lung: 5-60%
- RRT required in 10-15% of heart, 20-25% of liver, and 8-10% of lung transplant in first 30 d
- 50% reduction in 1-year survival in patients requiring peri-operative RRT

		80-100% of	· · · · · · · · · · · · · · · · · · ·	vill have		
CKD a	at 36 mor	oths post-tra	nsplant			
Table 1. Cumulative			Sector Sector Sector Sector			
Transplantation,	P	ercentage of Recipi	lents With Stage	es IV to V CK	o V CKD	
	Heart	Heart-Lung	Intestine	Liver	Lung	
mo	neart					
	1.9	1.7	9.6	8.0		
mo			9.6 14.2	8.0 13.9	2.9 10.0	

/ariable	Overall Relative Risk
Age (per 10-yr increment)	1.36
Pre-transplant GFR	
60 - 89 ml/min	1.38
30 - 59 ml/min	2.25
< 30 ml/min	3.41
Post-op ARF	2.13
Pre-transplant diabetes	1.42
Pre-transplant HTN	1.18
Pre-transplant Hepatitis C	1.15
Male	0.74



Strategies to Minimize Renal Injury in NRSOTR

- Avoid peri-op hypotension
- Minimize use of nephrotoxic drugs
- Optimize renal perfusion
- Appropriate and early treatment of HTN, diabetes, dyslipidemia as per guidelines
- Use of ACEI, ARB
- Optimize use of calcineurin inhibitors (CNI)
- Be vigilant in managing drug interactions

Immunosuppression Paradigm

Induction

- Short course of a potent parenteral agent given immediately post-transplant
- \downarrow risk of early acute rejection

Maintenance

- Life-long immunosuppression
- Combination therapy to maximize efficacy and minimize toxicity (e.g. 'triple therapy')

Maintenance Therapy Options 1. Calcineurin inhibitor (CNI) Cyclosporine or tacrolimus (Prograf[®] / Advagraf[®]) 2. Corticosteroids Purine synthesis inhibitor Mycophenolate mofetil (MMF (Cellcept[®]),

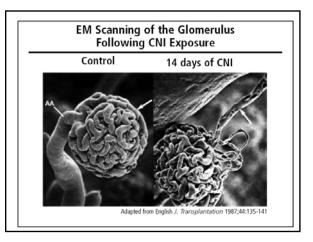
- mycophenolate sodium (Myfortic®), azathioprine
- 4. Proliferation signal inhibitor (mTOR inhibitor)
 - Sirolimus
 - Everolimus ("RAD", Certican®) SAP drug

CUHN General Hoppital

How do we choose the regimen?

• Factors to consider:

- immunologic risk (i.e. risk of rejection)
- risks of over-immunosuppression
 - cancer, infection
- side effect profile / patient co-morbidities
 - risk of diabetes
 - cosmetic concerns
- neuropsychiatric effects
- other specific indications (e.g. AZA in IBD)
- Regimens vary by transplant centre

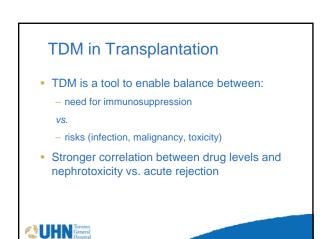


CNI Side Effect Profile

- Infection, malignancy → non-specific effect of all immunosuppression
- Tacrolimus
 - $-\uparrow$ hyperglycemia, neurotoxicity, diarrhea
- Nephrotoxicity (dose-related)
 - Acute 25 40%
 - Chronic most patients

UHN General Hospital

The Problem of CNI Inhibition CNI = cornerstone of immunosuppression Reduction of CNI exposure → potential for organ dysfunction → indirect renal injury Pathophysiology of renal injury dysregulation of vascular tone tubulointerstitial nephropathy and fibrosis central role of angiotensin II



Optimizing CNI Exposure

• Delicate balance between risk to kidney vs. risk to transplanted organ

- Strategies:
 - reduce CNI and add or ↑ mycophenolate
 - reduce CNI and add sirolimus → caution!
 - conversion from CNI to sirolimus
 - withdraw CNI (? possible in liver recipients)
 - conversion from cyclosporine to tacrolimus (?)
- Importance of TDM

UHN General Hospital

Factors Influencing PK of Immunosuppressants

- Age
- Race
- Type of organ
- Liver dysfunction
- Hepatitis C

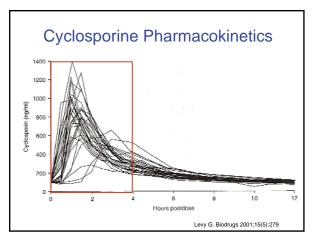
Infection

UHN Toronto General Hourita

- Small bowel length
- Gastrointestinal state
 - al state CHF, etc.) • Intestinal P-glycoprotein

• Time post-transplant

• Hematocrit


• Albumin levels

Diurnal variations

Drug interactions

· Comorbidities (diabetes,

- Intestinal P-glycoprotein and CYP450 expression
- Inflammatory states

Rationale for C₂ Monitoring

- C₂ is in region of highest PK variability
- Single sampling point defines CSA absorption
- Correlates with period of max CNI inhibition
- · Less metabolite cross-reactivity interference
- Clinical benefit vs. C₀ in most SOTR
- Disadvantages
 - time-sensitive sampling errors (level 2 hrs post-dose ± 15 min)
 - assay factors- requires dilution of sample

Immunosuppressant Target Levels

Modifying factors

UHN General Housing

- type of transplant and time post-transplant
- concomitant immunotherapy / use of induction
- recipient immunologic risk, donor factors
- infection, cancer history or other toxicity concerns
- graft status and function
- Few RCTs to support specific targets and little data beyond 1 year

Suggested Target Cyclosporine Levels* (ng/mL)

Time post-transplant (months)	C ₂ Liver	C ₂ Heart	C ₂ Lung	C ₀ Lung
0 – 3	1000	1200	1200 – 1600	250 – 350
4 - 6	800	1000	1200 – 1400	250 - 300
7 – 9	600	800 – 1000	1000 – 1200	200 – 250
10 – 12	600	800	1000 – 1200	200 – 250
> 12	600	600 - 800	800 – 1000	150 – 200

*Note: <u>Guideline only</u>, targets should always be determined in the context of the individual patient. Reduce targets for combo of CNI + SRL. Dose adjustment – may assume linear dose proportionality

CUHN Toronto General Hospital

Suggested Target Tacrolimus Trough Levels* (ng/mL)

Time post- transplant (months)	Liver	Heart	Lung
0 – 1	10 – 15	10 – 20	15 – 20
2 – 3	5 – 15	10 – 20	15 – 20
4 - 6	5 – 10	5 – 15	15 – 20
7 – 9	5 – 10	5 – 15	10 – 15
10 – 12	5 – 10	5 – 15	10 – 15
> 12	5 - 8	5 – 15	10 – 15

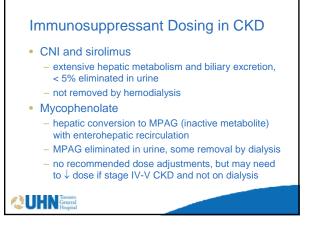
*Note: <u>Guideline only</u>, targets should always be determined in the context of the individual patient. Reduce targets by at least 50% for combo of CNI + SRL. Dose adjustment – may assume linear dose proportionality

CUHN General Hospital

Sirolimus (SRL)

- Starting dose 2 5 mg daily (loading dose optional)
- Long t_{1/2} (~62 h)
- Large inter- and intrapatient variability
- Trough levels correlate with AUC
- Levels: wait at least 7 days !!
- Linear dose proportionality assumed
- Therapeutic target (all organs): 5 15 ng/mL
 - lower end if combined with CNI (e.g. 5 8) and reduce CNI target

Mycophenolate (MPA)


- MPA monitoring controversial
 - wide inter-individual variability in MPA kinetics
 - no single time point accurately reflects exposure
 → practicality of doing MPA AUC?
 - some centres do trough levels in setting of toxicity but targets and dose adjustments unclear
- Further research is needed

UHN General Hospital

TDM in Practice

- When to do a level and adjust?
 initiating therapy or changing dose
 - suspect toxicity or non-adherence
 - managing drug interactions
 - managing complications due to over-
 - immunosuppression
- For patients with stable graft function
 - would not \uparrow dose/levels in most cases

Targets for Immunosuppressant Drug Interactions

- Intestinal delivery
 - Gastric pH, gastric emptying, food
- Active intestinal efflux pumps and metabolism
 - P-glycoprotein (P-gp), CYP450
- Hepatic first-pass effect
 - CYP450

UHN Toronto General Hospital

Drug Interactions with Immunosuppressants

- CNI and SRL are substrates and inhibitors of CYP3A4 and P-gp
 - highly susceptible to drug interactions
 - oral bioavailability affected more than clearance
 - most data with cyclosporine
- Potential for serious clinical sequelae
 - graft rejection, toxicity

UHN Toronto General Hospital

Agents Affecting CNI / SRL Exposure

<u>↑ exposure</u>

diltiazem, verapamil erythromycin, clarithromycin azoles cimetidine protease inhibitors metoclopramide amiodarone grapefruit juice

<u>↓ exposure</u>

isoniazid phenobarbital phenytoin rifampin carbamazepine

CUHN General General Hospital

Interactions with Azoles

- Keto > itra ~ vori > fluconazole
- Magnitude of interaction depends on dose, time on therapy
- \downarrow interaction with IV CNI
- Consider empiric dose adjustments when starting AND stopping azole

UHN Toronto General Hospital

Management of Azole Interactions

	CSA Dose	Tac Dose	SRL Dose
Fluc > 200mg/d	↓ 21-50%	↓ 40%	↓ 50-70%
Itra	↓ 50-60%	↓ 50-60%	No data
Vori	↓ 50%; reduce dose by 50%	↓ 66%; reduce dose by 66%	↓ 90%; labelled contraindication*
Posa	\downarrow 0-30%; reduce dose by 25%	↓ 75-80%; reduce dose by 66%	Extent unclear; large dose ↓ req'd; labelled contraindication*
*may be used i	in combo if ↓ SRL by 75	- 90%	
	rto ral		odds-Ashley E. Pharmacothera

Statins and CNI Reports of myopathy/ rhabdomyolysis with cyclosporine, few with tacrolimus Inhibition of CYP3A4 metabolism, P-gp, other transport proteins → ↑ statin exposure Atorva-, prava- and simvastatin used commonly and generally considered safe at lower doses

Mycophenolate Mofetil and PPIs

- GI complaints with mycophenolate frequent and often lead to dose reduction
- PPI use common after NRSOT
- MMF needs acidic pH for dissolution, hydrolysis to MPA
- \uparrow gastric pH with PPI \rightarrow \downarrow MPA levels and AUC
- Effect on graft outcomes unclear
- No interaction with PPI and mycophenolate sodium
- Specific dose adjustment unclear, ↑ graft monitoring recommended

CNI and SRL

- CSA + SRL
 - \uparrow SRL AUC 230% with co-administration
 - $-\uparrow$ SRL AUC 80% if taken 4 hours apart

(esp. in combination with tacrolimus)

- consistency important
- Tac + SRL ? not documented
- Combo of <u>either</u> CNI + SRL potentiates nephrotoxicity
 - $-\downarrow$ targets for both with TDM

Other Significant Interactions

- Azathioprine and allopurinol

 dose reduce azathioprine by 66 75%
- Cholestyramine

 avoid if possible or space at least 4 hrs apart
- Sevelamer and mycophenolate
 give sevelamer 2 hours after mycophenolate
- aminoglycosides, ampho B, vanco, NSAIDs
 - additive toxicity with CNI
 - avoid or use with caution

Common Sense Approach

- Choose agent within class with least potential for interaction
- · Avoid combos with potential for profound effects
- Empiric dose change to CNI/SRL if potential effects are large
- Dose adjust for renal/hepatic dysfunction
- Use TDM and monitor for adverse effects
- Monitor if start OR stop interacting drug

Infectious Issues in NRSOTR

<section-header><section-header><complex-block><complex-block><complex-block><complex-block>

Challenges of Infection in a Transplant Patient

- More difficult to recognize infection
- May need intensified and/or extended duration regimen
- Drug interactions
 - $-\uparrow$ CNI levels (macrolides, azoles)
 - $-\downarrow$ CNI levels (rifampin, INH)
 - Additive nephrotoxicity (vanco, AG, ampho B)
- Minimize immunosuppression where possible

CUHN General Hospital

UHN General Housing

Infection Prophylaxis

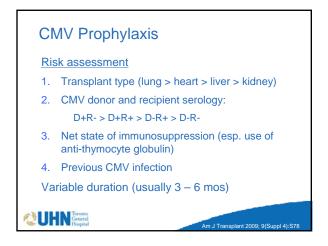
- Most common concerns
 - -CMV
 - PCP (now Pneumocystis jiroveci)
 - herpes
 - oral thrush
- Goal is prevention

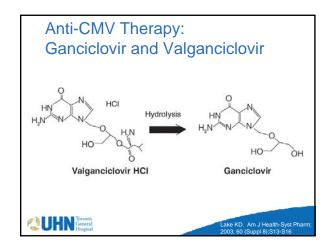
CUHN General Hospital

PCP Prophylaxis

TMP/SMX – drug of choice

- many regimens


- excellent efficacy at very low doses (*e.g.* 1 SS tab PO 3x/week)
- Dapsone if mild documented sulfa allergy
 50 100mg PO 5 7x/week
- Pentamidine if severe documented sulfa allergy
 300mg inhaled q 4 weeks
- Variable duration (usually at least 6 mos)



Cytomegalovirus (CMV)

- Member of herpesvirus family
- Most common post-transplant opportunistic infection
- ↑ morbidity and mortality, ↑ risk of graft loss
- Previous exposure to virus important – immunologically naïve patients at highest risk
- Different approaches to prevention

 prophylactic therapy (most common)
 - 'pre-emptive' therapy
- UHN Toronto General Housed

Anti-CMV Therapy

- Ganciclovir (IV) or valganciclovir (PO)
- Inhibit viral DNA polymerase
- Prophylaxis: valganciclovir
- Treatment: ganciclovir or valganciclovir
- NPO or poor GI absorption: ganciclovir
- Do NOT dose-reduce for toxicity (*e.g.* ↓ WBC or platelets)

n J Transplant 2009; 9(Suppl 4):S7

CUHN Toronto General Hospital

Calculated Creatinine Clearance	Prophylaxis*	Treatment*
> 60 mL/min	900 mg PO daily	900 mg PO BID
40 - 59	450 mg PO daily	450 mg PO BID
25 – 39	450 mg PO every other day	450 mg PO daily
10 - 24	450 mg PO twice weekly	450 mg PO every other day
hemodialysis	100 mg PO three times weekly post-HD*	200 mg PO three times weekly post-HD*
*must use Valcyte oral s	olution	

dapsone → dose post-HD Valganciclovir OK for use in hemodialysis Current guidelines for ganciclovir and valganciclovir may underdose in hemodialysis (?)

Anti-Infective Dosing in CKD

- no adjustment at low prophylaxis doses

TMP/SMX → dose post-HD

- extensive hepatic metabolism, renal elimination

• TMP/SMX, dapsone

Calculated Creatinine Clearance	Prophylaxis	Treatment
≥ 70 mL/min	5 mg/kg IV q24h	5 mg/kg IV q12h
50 - 69	2.5 mg/kg IV q24h	2.5 mg/kg IV q12h
25 – 49	1.25 mg/kg IV q24h	2.5 mg/kg IV q24h
≤ 24	0.625 mg/kg IV q24h	1.25 mg/kg IV q24h
hemodialysis	0.625 mg/kg IV post- dialysis on dialysis days only	1.25 mg/kg IV post- dialysis on dialysis days only

	Liver	Heart	Lung
PCP -TMP/SMX -dapsone	6 – 12 mos	indefinite	indefinite
CMV (per risk assmt) -valganciclovir -IV ganciclovir	3 – 6 mos	3 – 6 mos	6 – 12 mos
Herpes (if no CMV Px) -acyclovir, famciclovir, valacyclovir	usually none	3 mos	3 mos
ollow established guidelines wher mmunosuppression is intensified.	e they exist. Durat	tion may be prolon	ged if net state of

Summary CKD in NRSOTR is a growing problem and complicates therapy of both conditions TDM is an important tool to optimize dosing of immunosuppressants Vigilance and careful management of drug interactions is important to avoid unnecessary drug toxicity Infection is common but may be more difficult to recognize and manage; goal is prevention

