Evidence of the impact of kidney disease on Drug Metabolism and Transport

Vincent Pichette MD, PhD, FRCP(c), FACP Professor of Medicine and Pharmacology Université de Montréal Montréal, Québec, Canada

Problems with drug administration in CRF

- Numerous drugs to treat co-morbid conditions in CRF patients
- Important incidence of side-effects associated with high morbidity
- Secondary to inadequate dosage

Repercussions of CRF on pharmacokinetics of drugs

- Despite the adjustment of dosage in function of glomerular filtration, there is an accumulation of several drugs that could only be explained by a decrease in their non-renal clearance
 - Metabolism
 - Transport

Repercussions of CRF on non-renal clearance of drugs

Drug Substrate	Renal Function	f,	CLT	$c\mathbf{L}_{R}$	CL _{NR}	%1 CL _{NR} *	AUC	bi (hr)	CL _{SR} Pathway(s)	
Bupropion27	Normal	0.5	414 L/hr	NR	NR		0.49 µg tirimL	8.1	CYP2B6	
	CKD		155	NR	NR		1.1	19.4		
Cerivastatin ²⁰	Normal	0	22.2 L/hr	NR	NR		13.5 µg/hr/L	2.3	CYP2C8, CYP3A4,	
	CKD		13.3	NR	NR		22.5	3.4	P-gp, OATP, MRP, BCRP	
Cibenzoline ²⁰	Normal	43	707 mL/min	344	363		1905 ng hrinL	7.3	CYP2D6	
48-kr interdialytic period	ESRD		224	0	224	-38	6645	22.4	C1P504	
Cyclophosphamide ³⁰	Normal	19	79 mL/min	14.9	64.1			4.8	CYP2B6 CYP2C9	
	CKD		47	2.4	44.6	-30	+77%6*	7.3	MRP, BCRP	
Erythromycin ¹¹	Normal	5	4,052 mL/min	NR	NR		4.7 mghcL	2.1	CYP3A4,	
Non-dialysts day	ESRD		1,147	NR	NR		20.1	2.7	r-gp, OATP	
Felbamate ³²	Normal	30	0.50 mL/min/kg	0.15	0.35		526 µg hr inL	19.2	CYP2E1.	
	CKD		0.25	0.02	0.23	-34	1119	33.9	CYPSA4	
Lidocaine ¹⁰	Normal	4	11.9 mL/min/1.73 m ²	NR	NR		NR	2.2	C37914.3	
	CKD		6.0	NR	NR		NR	4.6	CYP3A4	
Not disbute day	FSRD		11.1	NR	NR		NR	2.6		

Plan

- Repercussions of CRF on nonrenal clairance of drugs in animals and human

 Metabolism
- Transport
- Administration of drugs in CRF New recommendations
- FDA KDIGO

Conjugaison reactions (phase II)

- Glucuronidation
- Acétylation
- Sulfonation (sulfation)
- Methylation
- Glutathione
- · Acides aminés

Animal model : 5/6 nephrectomy

Physiological characteristics of the animal model							
	Control	CRF					
Weigth (g)	310 ± 10	308 ± 23					
Creatinine (umol/L)	57 ± 3	$154\pm12^{\mathrm{a}}$					
Urea (mmol/L)	5.6 ± 0.7	$26. \pm 3.9^{a}$					
Clearance (mL/min)	0.88 ± 0.5	0.33 ± 0.03^{a}					
p < 0.001		JASN 12:326, 2					

Alterations in liver metabolic enzymes in CRF rats

			Laver	
	Protein	RNA	Activity	Effect
Metabolic Enzy	mes			
CYP1A1	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow metabolic CL
CYP2B1	NA	NA	NA	NA
CYP2C6	NA	NA	NA	NA
CYP2C11	↓45%	Ţ	↓ 35%	↓ metabolic CL
CYP2D	\leftrightarrow	\leftrightarrow	NA	↔ metabolic CL
CYP3A1	↓85%	Ţ	↓ 35%	↓ metabolic CL
CYP3A2	↓ 45%	Ļ	↓ 35%	↓ metabolic CL
Nat1	↓33%	NA	↓ 45%	↓ metabolic CL
Nat2	1 50%	↓35%	↓ 50%	↓ metabolic CL

Mechanism of drug enzymes down-regulation in CRF

Circulating factors in uremia

Which circulating factor ?

- Several uremic toxins accumulate in CRF
- CRF is a state of chronic inflammation : cytokines
- CRF is associated with numerous metabolic disturbances
 - Secondary hyperparathyroidism: elevated parathyroid hormone (PTH)

Repercussions of CRF on drug metabolism

- CRF could decrease the metabolism of drugs
 - In the liver
 - In the intestine

Repercussions of CRF on intestinal metabolism of drugs

- Phase I enzymes are present in the intestine
- The intestine is implicated in drug metabolism
 - First-pass metabolism
 - Systemic metabolism

Alterations in intestinal metabolic enzymes in CRF rats

-	Protein	RNA	Activity	Effect on bioavailability
Metabolic Enz	mes			
CYP1A1	↓ 40%	↓ 32%	↓ 25%	Ť
CYP2B1	\leftrightarrow	\leftrightarrow	NA	\leftrightarrow
CYP2C6	\leftrightarrow	\leftrightarrow	NA	\leftrightarrow
CYP2C11	\leftrightarrow	\leftrightarrow	NA	\leftrightarrow
CYP2D	NA	NA	NA	NA
CYP3A1	NA	NA	NA	NA
CYP3A2	↓ 70%	↓36%	↓ 25%	Ť
Nat1	NA	NA	NA	NA
Nat2	NA	NA	NA	NA

Decreased drug liver uptake in CRF

Alterations in liver drug transporters in CRF rats

	Liver					
	Protein	RNA	Activity	Effect		
Transporters						
P-gp	↑ 20%	↑ 50%	↑45%	↑ biliary excretion		
MRP2	\leftrightarrow	↑ 40%	NA	↔ biliary excretion		
MRP3	NA	NA	NA	NA		
Ontro?	1.40%		NA	↓ metabolic CL		
Oatp2	140%		DA.	↓ biliary excretion		
Oatp3	NA	NA	NA	NA		

Repercussions of CRF on drug transport

- CRF could decrease the transport of drugs
 - In the liver
 - In the intestine

Alterations in intestinal transporters in CRF rats

	Intestine						
	Protein	RNA	Activity	Effect on bioavailability			
Transporters							
P-gp	↓ 6 5%	\leftrightarrow	1 60%	Ť			
MRP2	↓ 60%	\leftrightarrow	↓ 35%	Ť			
MRP3	↓ 35%	NA	NA	Ļ			
Oatp2	\leftrightarrow	NA	NA	\leftrightarrow			
Oatp3	\leftrightarrow	\leftrightarrow	NA	\leftrightarrow			

Clin Pharmacol Ther 83:898, 2008

Drug metabolism and transport in CRF patients

- Indirect data (pharmacokinetic studies)
- In vitro studies
- In vivo studies

Repercussions of CRF on non-renal clearance of drugs

Drug Substrate	Renal Function	£,	CLT	\mathbf{CL}_R	CLNR	%\ CL _{NR} *	AUC	(hr)	CLNR Pathway(1)
Buprepion ²⁷	Normal	0.5	414 L/hr	NR	NR		0.49 µg hr inL	8.1	C172B6
	CKD		155	NR	NR		1.1	19.4	
Cerivastatin ³⁸	Normal	0	22.2 L/ter	NR	NR		13.5 µgtr/L	2.3	CYP2C8, CYP3A4,
	CKD		13.3	NR	NR		22.5	3.4	P-gp, OATP MRP, BCRE
Cibenzoline ²⁰	Normal	43	707 mL/min	344	363		1905 ng hrinL	7.3	CYP2D6
48-kr interdialytic period	ESRD		224	0	224	-38	6645	22.4	CYP3A4
Cyclophosphamide ³⁰	Normal	19	79 mL/min	14.9	64.1			4.8	CYP2B6, CYP2C9,
	CKD		47	2.4	44.6	-30	+77%*	7.3	CYP3A4, MRP. BCRJ
Erythromycin ¹¹	Normal	5	4,052 mL/min	NR	NR		4.7 mghrL	2.1	C1P3A4,
Non-dialysts day	ESRD		1,147	NR	NR		20.1	2.7	P-gp, OATP
Felbamate ³⁰	Normal	30	0.50 mL/min/kg	0.15	0.35		526 µg-heimL	19.2	CYP2E1, CYP3A4
	CKD		0.25	0.02	0.23	-34	1119	33.9	
Lidocaine ³⁰	Normal	-3	11.9 mL/min/1.73 m ²	NR	NR		NR	2.2	
	CKD		6.0	NR.	NR		NR	4.6	CYP3A4
Non-dialysts day	ESRD		11.1	NR	NR		NR	2.6	

Oral NMEs with renal impairment studies (2003-2007)

Drug metabolism and transport in CRF patients

- Indirect data (pharmacokinetic studies)
- In vitro studies
- In vivo studies

Table 1	Characteristics of the	CRF	patients	
	Etiology of CRF	Age	Gender	GFI
Patient 1	Diabetes	65	М	11.7
Patient 2	Ischemic	66	M	8.6
Patient 3 ^a	Ischemic	75	M	7.6
Patient 4	Obstructive	74	M	9.5
Patient 5 ^a	Glomerulonephritis	68	М	7.7
Patient 6	Ischemic	30	F	1.6
Patient 7	Diabetes	73	F	6.9
Patient 8	FSGS	35	F	4.8
Patient 9	Hypertension	75	F	6.6
Patient 10	Diabetes	70	F	3.9
Patient 11	Diabetes	64	M	8.8
Patient 12	Hypertension	59	M	5.0
Patient 13	Diabetes	49	М	5.4
Patient 14	Glomerulonephritis	58	F	5.2
Patient 15	Diabetes	58	F	11.5
Patient 16	Diabetes	39	F	9.0

Downregulation of liver P450: role of uremic mediators

Down-regulation of liver P450: role of uremic mediators

	Etiology of CRF	GFR before dialysis (mlmin ⁻¹ 1.73 m ⁻²)	Time on dialysis (months)	Time after transplantation (days)	GFR after transplantation (ml min ⁻¹ 1.73 m ⁻²)
Patient 21	Alport	5.7	10	32	37.5
Patient 23	Pyelonephritis	6.6	12	63	33.1
Patient 25	Glomerulonephritis	10.2	26	59	109.6
Patient 26	Polycystic	5.5	10	34	53.9
Patient 27	Diabetes	8.4	5	62	69.4
Patient 284	FSGS	5.6	27	31	59.9
Patient 29	lgA	6.2	18	47	28.6
Patient 30	Diabetes	7.9	15	38	71.3
				BI	P 144-1067 2005

Drug metabolism and transport in CRF patients

- Indirect data (pharmacokinetic studies)
- In vitro studies
- In vivo studies

CYP2C9 activity in end-stage renal disease

No. 7 6 Gender (female/male) $2/5$ $4/2$ Lace (black/white) $7/0$ $2/4$ yge (y)* 45.9 ± 10.3 63.3 ± 13.0 <0.2 Warfarin (mg/d)* 4.9 ± 1.5 6.2 ± 3.1 NS NR* $205 \pm 12.8 \pm 23.7 \pm 0.49$ NS Usenus SP gravity* $0.82 \pm 0.25 \pm 0.55 \pm 0.09 = 0.63$ 0.32	Characteristic	ESRD patients	Control subjects	P value	
$\begin{array}{c cccc} \text{idender}(\text{female}/\text{male}) & 2/5 & 4/2 &\\ \text{tace}(\text{black/white}) & 7/0 & 2/4 &\\ \text{yee}(y)^* & 45.9 \pm 10.3 & 63.3 \pm 13.0 & <0.2\\ \text{Warfarin}(\text{mg/d})^* & 4.9 \pm 1.5 & 6.2 \pm 3.1 & \text{NS}\\ \text{NR*}^* & 2.05 \pm 1.28 & 2.37 \pm 0.49 & \text{NS}\\ \text{Horms}(S^{\text{reg}}_{\text{reg}})^* & 0.85 \pm 0.25 & 0.55 \pm 0.09 & <0.3\\ \end{array}$	No.	7	6	_	
Race (black/white) $7/0$ $2/4$ χ_{PG} (y)* 45.9 ± 10.3 63.3 ± 13.0 <0.2 λ urfarin (mg/d)* 4.9 ± 15 6.2 ± 3.1 NS NR* 2.05 ± 128 2.37 ± 0.49 NS Howards SP write* 0.82 ± 0.25 0.52 ± 0.09 <0.32	Gender (female/male)	2/5	4/2	_	
Age (y)* $45.9 \pm 10.3 \ 63.3 \pm 13.0$ $<.02$ Warfarin (mg/d)* $4.9 \pm 1.5 \ 6.2 \pm 3.1$ NS NR* $2.05 \pm 1.28 \ 2.37 \pm 0.49$ NS	Race (black/white)	7/0	2/4	_	
Warfarin (mg/d)* 4.9 ± 1.5 6.2 ± 3.1 NS NR* 2.05 ± 1.28 2.37 ± 0.49 NS Ngens S/P ratio* 0.82 ± 0.25 0.55 ± 0.09 < 0.23	Age (y)*	45.9 ± 10.3	63.3 ± 13.0	<.02	
NR* 2.05 ± 1.28 2.37 ± 0.49 NS largen S/P ratio* 0.82 ± 0.25 0.55 ± 0.09 < 03	Warfarin (mg/d)*	4.9 ± 1.5	6.2 ± 3.1	NS	
$P_{\text{lasma}} = S/P_{\text{ratio}} = 0.82 \pm 0.25, 0.55 \pm 0.00, < 0.3$	INR*	2.05 ± 1.28	2.37 ± 0.49	NS	
lasilia 5-7 fallo 0.82 ± 0.25 0.55 ± 0.05 <.05	Plasma S/R ratio*	0.82 ± 0.25	0.55 ± 0.09	<.03	

Non-renal clearance of midazolam in ESRD patients

Parameter	Control Subjects	Patients with ESRD	P
Hidazolam	63.12° - 23.00 - 7	substantial strategy	
Cmax (ng/m); mean ± SD)	12.3 ± 3.9	11.0 ± 5.3	N
tum th: median france]]	0.50 (0.33 to 0.75)	0.50 (0.22 to 1.50)	N
t _{v2} (h; mean ± SD)	1.8 ± 0.7	2.6 ± 2.4	N
CL/F (L/h; mean ± SD)	88.9 ± 24.6	96.9 ± 46.8	N
AUC _{0 to +} (h/ng per ml; mean ± SD)	23.8 ± 5.7	26.1 ± 13.9	N
'-Hydroxymidazolam			
C _{max} (ng/ml; mean ± SD)	3.6 ± 1.5	3.0 ± 1.3	N
tous (h; median [range])	0.750 (0.330 to 0.750)	0.625 (0.330 to 1.500)	N
AUCo (h/ng per mt mean ± SD)	6.4 ± 2.5	6.5 ± 2.3	N

What are the strategies to prevent the accumulation of drugs in CRF patients?

- Dose adaptation to obtain identical C_{max} and AUC
- Theoritically:
 - · Increase the interval only
 - Decrease the dose only
 - Both

	drugs	
Factors involved in PK	Kidney disease effects	Measured specifically for incorporation into drug dosage
Absorption	+	N
Intestinal and first pass metabolism	+	N
Distribution	++	N
Clearance		
Renal	+++	Y
Nonrenal	++	N

Plan

- Repercussions of CRF on nonrenal clairance of drugs in animals and human
 - Metabolism
 - Transport
- Administration of drugs in CRF
- New recommendations

Modifications 1998-2010

- PK studies for nonrenal clearance drugs
- Use of eGFR (MDRD), as well as Clcr (Cockcroft-Gault)
- PK studies in hemodialysis (per et interdialytic)

Modifications 1998-2010

- PK studies for nonrenal clearance drugs
- Use of eGFR (MDRD), as well as Clcr (Cockcroft-Gault)
- PK studies in hemodialysis (per et interdialytic)

GFR evaluation

- The diagnosis of renal failure (and its classifiaction)
 - MDRD (ou CKD-EPI)
- The majority of PK data in CRF patients
 Cockcroft-Gault (C-G)

AJKD 54:33-42, 2009

Table 3 Concordance between kidney function categories assigned using measured GFR vs. estimated kidney function

Equation	Concordant (%) *	Discordant (%)	
		Lower than mGFR	Higher than mGFR
MDRD Study	78	14	8
CG	73	12	16
CG _{IBW}	66	29	5

p-value <0.001 for the difference in concordance among all equations

Abbreviations: mGFF, metsured giomerular filmation rate, MDRD, Modification of Diet in Renal Disease Study equation; CG, Cockcroft-Gault equation using actual body weight; CGFBW, Cockcroft-Gault equation using ideal body weight.

Modifications 1998-2010

- PK studies for nonrenal clearance drugs
- Use of eGFR (MDRD), as well as Clcr (Cockcroft-Gault)
- PK studies in hemodialysis (per et interdialytic)

Acknowledgements

- Dr. Francois A. Leblond
- Karine Desbiens
- Judith Naud Josée Michaud
- Dr. Pierre Dubé
- Emilie Simard
- Caroline Boisvert

- Mélina Dani
- Dr. Thomas D Nolin
 Dr. Edith Sim

 - Canadian Institute of Health Research • Le Fond de la Recherche en Santé du Québec
 - Fondation Hôpital Maisonneuve-Rosemont